Über die Dissoziationsenergien von S-S-Bindungen und verwandte Probleme.

Von

N. W. Luft*.

(Eingelangt am 15. Februar 1955.)

Durch kritische Überprüfung bekannter Literaturangaben sowie theoretische Überlegungen und Berechnungen wird gezeigt, daß Schwefeldampf außer den Molekülen S_s , S_c , S_2 und dem kürzlich beobachteten S_4 auch noch die ringförmigen Moleküle S_s , S_5 und S_7 enthält. Hochpolymere sind im Schwefeldampf wegen der mit fortschreitender Polymerisation verbundenen Entropieabnahme nicht vorhanden.

Die Gleichgewichtskonzentration von Biradikalen im Schwefeldampf ist unbedeutend, da die Aufbrechung spannungsfreier Schwefelringe etwa 63 kcal/Mol erfordert. Die niederen Biradikale zeigen wahrscheinlich Resonanz bis zu etwa $\cdot S_6 \cdot$; infolgedessen sollte eine gewinkelte ozonartige Struktur S=S=S mit Doppelbindungen erhöhte Stabilität gegenüber dem Biradikal $\cdot S_3 \cdot$ besitzen. Das stabilste Trimere ist jedoch ein Dreierring mit Einfachbindungen.

Bis vor kurzem galten die Daten von $Kelley^1$, welche sich im wesentlichen auf die Arbeiten von *Preuner* und $Schupp^2$ sowie von West und Menzies³ stützten, als grundlegend für die Zusammensetzung und thermodynamischen Eigenschaften des Schwefeldampfes. Kelleys Daten wurden

* Adresse: 52, Lady Bridge Road, Cheadle Hulme, Cheshire, England.

¹ K. K. Kelley, U. S. Bur. Mines, Bull. 406, 1 (1937). — Vgl. D. R. Stull, Ind. Eng. Chem. 41, 1968 (1949). — G. Wunderlich, Z. Elektrochem. 56, 218 (1952).

² G. Preuner und W. Schupp, Z. physik. Chem. 68, 129 (1909).

³ W. A. West und A. W. Menzies, J. Physic. Chem. **33**, 1880 (1929). — Vgl. R. S. Bradley, Trans. Faraday Soc. **50**, 1182 (1954). — Neuerdings gibt J. R. West, Ind. Eng. Chem. **42**, 713 (1950), verbesserte Werte an, nämlich log P = 6,04892 - 4087,8/T bzw. log P = 4,57579 - 3288,5/T für den Sättigungsdampfdruck des Schwefels zwischen 100 und 300° bzw. 300 bis 1040° C, ferner den normalen Sdp. $t_b = 444,6$ ° C (646° C bei 10 Atm.) und die kritischen Daten $P_k = 116$ Atm., $t_k = 1040$ ° C, $p_k = 0,403$ g/cm³.

N. W. Luft: Über die Dissoziationsenergien von S-S-Bindungen. 475

beispielsweise auch noch in den jüngsten Veröffentlichungen von Gee⁴ sowie Gamson und Elkins⁵ übernommen. Danach soll gasförmiger Schwefel zur Hauptsache aus den drei Molekülarten S₈, S₆ und S₂ bestehen; mit steigender Temperatur tritt fortschreitende Depolymerisation ein, so daß oberhalb 1000° K praktisch nur noch S₂ existiert, während oberhalb 2000°K auch atomarer Schwefel auftritt. Aten⁶ konnte zwar tetrameren Schwefel in Schwefelschmelzen von 160°C durch Abschrecken und Lösen in Schwefelkohlenstoff nachweisen, aber erst in jüngster Zeit erscheint durch die thermodynamischen⁷ und spektroskopischen⁸ Untersuchungen von Braune und Mitarbeitern die Existenz von S_4 im Schwefel gesichert.

Kelley und auch Braune und Mitarbeiter faßten die experimentellen Ergebnisse in empirischen Gleichungen (mit 3 bzw. 2 Konstanten) für die Gleichgewichtskonstanten:

$$K_{2n} = P_{S_2}^{n} / P_{S_{2n}} \tag{1}$$

der Depolymerisationsreaktionen:

$$\mathbf{S}_{2n} = n \, \mathbf{S}_2 \tag{2}$$

mit n = 1, 3, 4 und bzw. 2 zusammen. Aus diesen wurden die Reaktionsenthalpien $\Delta \mathbf{H}_{2n}$ und -entropien $\Delta \mathbf{S}_{2n}$ ermittelt, welche in Kolonne I bzw. II der Tabelle 1 angegeben sind. Für die Auswertung wurde die

Tabelle 1. Reaktionsenthalpien ΔH_{2n} (kcal/Mol) und

-entropien ΔS_{2n} (Cl).

s _{2n}	∆ <u>⊦</u>	a_{2n}	ΔS_{2n}				
	I	п	I	11	III		
\mathbf{S}_{8}	98,80	92,18	112,5	101,3	103,0		
S_6	64,40	$\begin{array}{c} 63,71\\ 28,40 \end{array}$	73,7	69,1 31.9	67,3 37.1		

Bezugstemperatur von 600° K zugrunde gelegt, was der unteren Grenze der experimentellen Bedingungen entspricht. In Kolonne III derselben Tabelle 1 sind zum Vergleich theoretische Reaktionsentropien für 600° K angegeben. Diese wurden aus bekannten Daten^{9, 10} für S₂ und aus den weiter unten quantenstatistisch berechneten Entropien der

⁵ B. W. Gamson und R. H. Elkins, Chem. Eng. Progr. 49, 203 (1953).

⁷ H. Braune, S. Peter und V. Neveling, Z. Naturforsch. 6 a, 32 (1951).

⁴ G. Gee, Trans. Faraday Soc. 48, 515 (1952).

⁶ A. H. W. Aten, Z. physik. Chem. 88, 321 (1914).

⁸ H. Braune und E. Steinbacher, Z. Naturforsch. 7 a, 486 (1952).

⁹ Natl. Bur. Stand., Circular 500. "Tables of Selected Values of Chemical Thermodynamic Properties." Washington. 1952.

¹⁰ L. Brewer in "The Chemistry and Metallurgy of Miscellaneous Materials". New York: McGraw-Hill Book Co., Inc. 1950.

Moleküle S_8 , S_6 und S_4 erhalten. Würde man für S_8 die thermodynamischen Daten benützen, welche kürzlich *Scott* und Mitarbeiter¹¹ mit einer von der unsrigen verschiedenen Frequenzzuordnung berechneten, so erhielte man $\Delta S_8 = 110,3$ Cl bei 600° K (115,3 und 106,0 Cl bei 298,16 bzw. 1000° K), und die Abweichungen von den Werten der ersten beiden Kolonnen würden teilweise groß genug, um sicherlich außerhalb der experimentellen Fehlergrenzen zu liegen. Mit den im nächsten Abschnitt berechneten Entropien ergibt sich aber bei S_8 und S_6 recht gute Anpassung an die experimentellen Werte von *Braune* und Mitarbeiter, bei S_4 jedoch nicht.

Obgleich unsere theoretischen Entropiewerte nur den Charakter einer guten Näherung besitzen und die Wahl einer höheren Bezugstemperatur für ΔS_4 den Unterschied verringern würde, muß trotzdem der Fehler wohl in der Auswertung der experimentellen Ergebnisse zu suchen sein. Der Schluß liegt nämlich nahe, daß Schwefeldampf außer den bisher berücksichtigten geradzahligen und höchstens achtgliedrigen ringförmigen Schwefelpolymeren auch noch andere enthält, z. B. S₃, S₅, S₁₀ usw., sowie möglicherweise auch Biradikale der allgemeinen Zusammensetzung $\cdot S \cdot_n$. Hochmolekulare Biradikale $\cdot S \cdot_n$ bewirken bekanntlich die Viskosität von geschmolzenem Schwefel^{12, 13}, wobei nach den interessanten Erörterungen von Gee4 im Bereich von 425 bis 435°K der Gewichtsanteil an Polymeren von 10^{-8} auf etwa 10%, die Zahl der Kettenglieder im Mittel von 100 auf 106 und die Viskosität von 0,1 auf 10³ Poise abrupt anwachsen. Unlängst gelang es Rice und Ditter¹⁴, aus Schwefeldampf von 0,1 Torr und 500° C durch Abschrecken mit flüssigem Stickstoff "grünen Schwefel" zu gewinnen, der nach den Angaben dieser Autoren wahrscheinlich Biradikale $\cdot S_8 \cdot darstellt$, welche sich mit einer Aktivierungsenergie von 3,9 kcal/Mol in die gewöhnliche gelbe Modifikation S
8 umwandeln. Dem Molekül S $_3$ räumt allerdings
 Gee^4 in Analogie zum Ozon nur beschränkte Stabilität ein und schließt, daß es in Gleichgewichten neben S_8 und S_6 ohne Bedeutung ist.

Die kritische Untersuchung dieses Fragenkomplexes erfordert eine eingehendere Diskussion der Struktur und Trennungsenergien von S—S-Bindungen, deren Kenntnis durchaus wesentlich ist für das Verständnis der im Vergleich zu den entsprechenden Sauerstoffverbindungen¹⁵ außergewöhnlichen Stabilität vielatomiger, ketten- und ringförmiger Schwefelmoleküle.

¹¹ G. B. Guthrie, D. W. Scott und G. Waddington, J. Amer. Chem. Soc. 76-1488 (1954).

¹² K. H. Meyer und V. Go, Helv. Chim. Acta 17, 1081 (1934).

¹³ R. E. Powell und H. Eyring, J. Amer. Chem. Soc. 65, 648 (1943).

¹⁴ F. O. Rice und J. Ditter, J. Amer. Chem. Soc. 75, 6066 (1953).

¹⁵ N. W. Luft, Z. Elektrochem. **59** (1955), im Druck.

Moleküldaten für cyklische Schwefelpolymere.

Die Atomabstände in S₈ werden zu r (SS) = 2,10 Å angenommen, während in der Literatur^{11, 16} Werte von 2,08 und 2,13 \pm 0,03 Å zu finden sind. Die Kernabstände in den niederen cyklischen Schwefelverbindungen S_n lassen sich aus dem Valenzwinkel α_n bzw. dem halben Spannungswinkel $\theta \simeq 1/2 (\alpha_8 - \alpha_n)$ nach der bei Cykloalkanen bewährten¹⁷ Formel

$$r = (r_x/\theta)\sin\theta, \tag{3}$$

mit $r_x = r_8 = 2,10$ Å und $\alpha_8 = 105^{\circ}$ schätzen¹⁵. Für den Grenzfall S₂ ergibt sich danach ein Kernabstand von 1,82 Å in guter Übereinstimmung mit dem genaueren spektroskopischen Wert 1,84 Å¹⁸.

Scott und Mitarbeiter¹¹ verbesserten die Zuordnung^{19, 20} der Schwingungsfrequenzen des S₈. Die von ihnen für die beiden niedrigsten, doppelt entarteten Grundfrequenzen angegebenen Werte, 150 und 86 cm⁻¹, scheinen aber noch zu hoch. Statt ihrer wählen wir hier die von Gerding und Westrik²¹ in Schwefelschmelzen bei 190° C beobachtete Ramanfrequenz von 43 cm⁻¹ sowie ~ 55 cm⁻¹, das heißt, wir fassen 86 und 103 bis 114 cm⁻¹ als Obertöne auf. Da die beiden Grundfrequenzen annähernd den Charakter von Drillschwingungen besitzen, liefert diese Zuordnung nun auch für die zugehörigen Torsionsschwellen Werte, die von vernünftiger Größenordnung sind und sich dem für das verwandte Molekül ClS—SCl gefundenen Wert²² gut anschließen.

Das Gebiet der SS-Streckfrequenzen¹¹ des S₈, nämlich 435 und 532 cm⁻¹, erscheint etwas breit im Vergleich zu dem für H₂S₆ beobachteten Bereich²³. Außerdem wären für eine hypothetische Zickzackkette von *n* S-Atomen mit Valenzwinkeln α_n die (n-1) Streckfrequenzen annähernd durch folgende Formel gegeben²⁴:

$$\omega_{1n} = \overline{\omega} (1 + \cos \alpha_n \cos x)^{1/2} \tag{4}$$

 mit

$$\overline{\omega} = (1/2 \pi c) \sqrt{2 f/m}, \qquad (5)$$

²⁰ H. J. Bernstein und J. Powling, J. Chem. Physics 18, 1018 (1950).

- ²¹ H. Gerding und E. Westrik, Rec. trav. chim. Pays-Bas 62, 68 (1943).
- ²² N. W. Luft und K. H. Todhunter, J. Chem. Physics 21, 2226 (1953).
- ²³ F. Fehèr und M. Baudler, Z. anorg. Chem. 258, 133 (1949).

²⁴ K. W. F. Kohlrausch, "Der Smekal-Raman-Effekt". Leipzig: Becker & Erler. 1943.

¹⁶ B. E. Warren und J. T. Burwell, J. Chem. Physics 3, 6 (1935).

¹⁷ J. D. Dunitz und V. Schomaker, J. Chem. Physics 20, 1703 (1952). — Vgl. H. J. Bernstein, ibid. 15, 284 (1947).

¹⁸ G. Herzberg, "Molecular Spectra and Molecular Structure." I. Diatomic Molecules. Van Nostrand. 1951.

¹⁹ S. Bhagavantam und T. Venkatarayudu, Proc. Ind. Acad. Sci., Sect. A 8, 101, 105 (1938).

f = Streck-Kraft-Konstante, m = Masse des S-Atoms, $x = \pi l/n$, l = 1, 2...(n-1). Die "Bandenbreite" ist dann

$$\Delta \omega = \omega_{1n} - \omega_{n-1,n} = \omega \cos \alpha_n \cos \pi/n, \tag{6}$$

also für übliche S-Valenzwinkel $\alpha \sim 90$ bis 105° maximal 0 bis 62 cm⁻¹ (für $n \to \infty$), das heißt, nur etwa die Hälfte des obigen Wertes. Benutzt man statt Gl. (4), welche nur unter der Voraussetzung verschwindender Deformationskonstanten d/f = 0 oder aber $x \ge 90°$ für Zickzackketten Gültigkeit hat, eine für den tatsächlichen Fall $d/f \simeq 0,08$ genauere, von Kirkwood²⁵ und Pitzer²⁶ auf n-Paraffine angewandte Gleichung, so errechnet sich eine noch geringere Breite. Anderseits sind beide Formelm auf den kronenförmigen S₈-Ring wohl nur beschränkt anwendbar. Aus diesem Grunde wollen wir lediglich die inaktive Frequenz von 532 durch 520 und letztere durch eine zusätzliche Frequenz bei 475 cm⁻¹ ersetzen. Die in Tabelle 2 für S₆ und S₄ angegebenen Frequenzen sind Schätzwerte; die für cyklisches S₃ entsprechen einem Valenzkraftsystem mit f = 1,90 und d = 0,18 ($\times 10^5$ Dyn/cm).

Molekül	r (SS), (A)	≮ (SSS), (°)	Grundfrequenzen (cm ⁻¹)			
S_3	2,06	60 00	550, 520 (2)			
S_4	2,09	90	520, 470 (3), 185 (2) 520, 470 (2), 425 (2), 185 (4), 42 (9)			
\mathbf{S}_{8}	2,10	105	520, 470 (3), 435 (2), 135 (4), 43 (2) 520, 470 (3), 465 (2), 435 (2), 225, 216, 185 (2), 152 (2), 55 (2), 43 (2)			
	9.00					
· 8 · 3	2,06 2,09	95 95	484(2), 207 484(3), 183(2)			
$\cdot S \cdot 4$	2,00	95	484(5), 217(2), 183(2), 50(3)			
$\cdot S \cdot _{8}$	2,10	95	484 (7), 217 (3), 183 (3), 50 (5)			

Tabelle 2. Moleküldaten.

Mit diesen Daten wurden die thermodynamischen Funktionen, nämlich die molare Wärmekapazität bei konstantem Druck C_p° (cal/Mol·°K), Entropie S° (Cl) und die Funktion — $(F^{\circ} - H_0^{\circ})/T$ für ein ideales Gas von S_n-Molekülen bei 1 Atm. Druck nach der bekannten Näherung²⁷ des harmonischen Oszillators und starren Rotators berechnet (Tabelle 3). Hierbei wurden nur Strukturen maximaler Symmetrie berücksichtigt, bei S₈ also nur die Kronenform der Symmetrie D_{4d} . Dies ist die bei

²⁵ J. G. Kirkwood, J. Chem. Physics 7, 506 (1939).

²⁶ K. S. Pitzer, J. Chem. Physics 8, 711 (1940).

²⁷ A. Eucken, "Lehrbuch der physikalischen Chemie", Bd. II, 1. Springer-Verlag. 1943. — H. S. Taylor und S. Glasstone, "Treatise of Physical Chemistry". New York. 1945.

gewöhnlicher und mittlerer Temperatur stabilste Konfiguration^{16, 19}, während bei hohen Temperaturen eine Reihe bereits früher beschriebener¹¹ Isomerer $(D_{2d}$ -Wannenform, C_1 -Formen mit d,l-Isomerie) auftreten, welche oberhalb 1000° K merkliche Beiträge zu den thermodynamischen Funktionen liefern. Das Hexamere S_6 besitzt dieselbe Art von Isomeren wie der Kohlenstoffring des Cyklohexans (vgl.²⁸), also eine starre Sesselform mit D3d-Symmetrie, die der Berechnung zugrunde gelegt wird und eine unendliche Mannigfaltigkeit stetig ineinander übergehender Konfigurationen einer weniger stabilen "beweglichen" Form. Die innere Rotations- und Faltbewegung letzterer ist aber wahrscheinlich derart durch Wechselwirkungspotentiale gegenüberliegender Bindungen eingeschränkt, daß man sie wohl am besten als Torsionsschwingungen um die Minimallagen der Boot- oder Wannenform (C_{2v}) bzw. der gestreckten Modifikation (V_d) behandeln könnte. Ähnliches gilt vermutlich für die Faltbewegung des S4-Moleküls, für welches hier angenommen wird, daß die Spannungsenergie im ebenen Ring (D_{4h}) geringer ist als die Abstoßungsenergie der gefalteten V_d -Form.

Molekül	300 ° K			600° K			1000° K		
	c_p°	$ -(F^{\circ}-H_0^{\circ})/T$	s°	c_p° .	$\left -(F^{\circ}-H_{0}^{\circ})/T\right $	8°	C_p°	$(F^{\circ}-H_0^{\circ})/T$	s°
S,	11,47	54,55	63,76	13,1	61,5	72,3	13,6	67,4	79,3
$\mathbf{S}_{\mathbf{A}}$	16,82	58,36	70,78	19,0	68,0	83,3	19,5	76,3	93,2
S,	27,31	73,53	93,20	30,5	88,9	113,4	31,3	101,9	129,1
S_8	37,63	83,36	110,04	41,9	104,4	137,9	43,1	122,1	159,5
$\cdot \mathbf{S}_{\mathbf{s}} \cdot$	12,4	59,3	69,4	13,5	66,8	78,4	13,7	73,0	85,4
$\cdot \mathbf{S}_{\mathbf{A}} \cdot$	15,6	64,8	76,8	17,2	72,8	87,1	17,6	80,6	96,0
$\cdot \mathbf{S}_{\mathbf{a}}^{\dagger} \cdot$	27,7	80,2	100,7	30,6	94,6	119,6	31,3	108,3	135,7
$\cdot \mathbf{S}_{s} \cdot$	37,9	91,8	119,2	42,0	110,9	144,8	43,1	129,5	166,9

Tabelle 3. Thermodynamische Funktionen für ideale Gase bei l Atm.

Biradikale und Resonanz.

Für die Schwefelkette der Biradikale $\cdot S \cdot_n$, für welche keine Daten bekannt sind, darf man wohl eine ähnliche Struktur wie in den Hydriden HS_nH annehmen. Entsprechend der nicht ebenen Konfiguration von HS—SH²⁹ und CIS—SCI^{30, 22} besitzen wahrscheinlich auch die langkettigen Hydride Potentialschwellen der inneren Rotation mit Minima in Gauche-Stellung. Demnach ist die stabilste Konfiguration die Helix- oder Korkzieherform. Der HS-Kernabstand wird gewöhnlich

²⁸ L. J. Oosterhoff und P. Hazebroek, Faraday Soc., Discuss. 10, 87 (1951).

²⁹ M. K. Wilson und R. M. Badger, J. Chem. Physics 17, 1232 (1949).

³⁰ K. J. Palmer, J. Amer. Chem. Soc. 60, 2360 (1938).

wie in H₂S³¹ zu r (SH) = 1,334 Å angenommen, obwohl wahrscheinlich r (HS—H) < r (HS₂—H) < r (H—S·) = 1,35 ist³². Der SS-Kernabstand beträgt 2,05 Å in HS—SH²⁹, für längere S-Ketten wächst er infolge erhöhter Abstoßungskräfte wahrscheinlich bis auf etwa 2,10 Å an (vgl. Tabelle 2).

Bei gestreckten Biradikalen $\cdot \cdot \mathbf{S} \cdot_n$ ist das Auftreten von Resonanz gemäß

$$\cdot S - S - \ldots - S - S \cdot \leftrightarrow S = S = \ldots = S = S$$

denkbar, wodurch sich die Kernabstände verkürzen würden; doch liegen experimentell dafür keine Anzeichen vor. Im Gegenteil folgert Gee⁴ aus der Reaktionsenthalpie $\Delta H = -4 \text{ kcal/Mol}$ der Reaktion

$$\cdot \mathbf{S} \cdot_{n} = \cdot \mathbf{S} \cdot_{n-8} + \mathbf{S}_{8} \tag{7}$$

in flüssigem Schwefel bei 160° C ($n \sim 10^6$), daß eher der S₈-Ring durch Resonanz gegenüber der Schwefelkette stabilisiert ist. Es dürfte jedoch wahrscheinlich sein, daß in beiden die Resonanzenergie verschwindet und *A*H hauptsächlich den Unterschied von Lösungswärmen zum Ausdruck bringt. Beim S_a ist allerdings der Energiegewinn durch Doppelbindungsbildung im Vergleich zur Anregungsenergie des 4wertigen Zustandes des zentralen S-Atoms prozentuell größer, so daß die Chancen einer ozonähnlichen Struktur S=S=S verbessert sind. Trotzdem dürfte aber S=S=S weniger stabil sein als cyklisches S_3 , da man seine Bildungsenthalpie, aus der von SO₂ und der bei der Substitution von O- durch S-Atome in SO_2 und (SO_4) = aufzuwendenden Energie, zu etwa 50 bis 60 kcal/Mol schätzt, während für letzteres weiter unten ein Wert von rund 32 kcal/Mol erhalten wird. Für das Radikal \cdot S—S—S \cdot ergibt sich daraus im nächsten Abschnitt, unter Zuhilfenahme von SS-Trennungsenergien und aus Ringspannungsenergien, eine Bildungsenthalpie von 72 kcal/Mol; das heißt das Biradikal $\cdot S_n$ ist etwas endothermer als S=S=S. In derselben Annäherung findet man, daß S=S=S=Setwa dieselbe Stabilität besitzt wie das Biradikal \cdot S \cdot_4 mit Einfachbindungen, während langkettige Moleküle $S=S_n=S$ mit (n-1) — oder weniger — Doppelbindungen um etwa 10 bis 20 kcal/S-Atom instabiler

- ³⁴ S. Leach, J. Chem. Physics 22, 1261 (1954).
- ³⁵ S. S. Mitra und Y. P. Varshni, J. Chem. Physics 22, 1269 (1954).

³¹ G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules". Van Nostrand. 1946.

³² Porter³³ gibt die Grundfrequenz in HS zu rund 2600 cm⁻¹ an. Dies entspricht einer Kraftkonstanten $f_{SH} = 3.9 \times 10^5$ Dyn/cm, während kürzlich aus emissionsspektroskopischen Beobachtungen³⁴ auf f = 4.19 geschlossen wurde und eine theoretische Interpolation³⁵ der Hydride der zweiten Reihe des periodischen Systems f = 4.15 und daraus ω (SH) = 2700 cm⁻¹ liefert; diese Werte weichen nicht sehr von denen in H₂S ab.

³³ G. Porter, Faraday Soc., Discuss. 9, 60 (1950).

sind als die entsprechenden Biradikale $\cdot S - S_n - S \cdot$ mit Einfachbindungen. Dieser Schluß wird auch nahegelegt durch die bekannte Tatsache, daß die Disulfide $H_2S_2^{29}$, $S_2Cl_2^{30}$, $(H_3C)_2S_2^{36}$ und $(F_3C)_2S_2^{37}$ ausnahmslos die Kettenstruktur -S - S und nicht die Konfiguration S = S < besitzen, da erstgenannte schätzungsweise 20 kcal/Mol stabiler als letztere ist.

Bei der quantenstatistischen Abschätzung der thermodynamischen Funktionen der Biradikale $\cdot S \cdot_n$ wurde nur der elektronische Triplett-Grundzustand ³B berücksichtigt, der den Beitrag $R \ln 3$ zur Entropie liefert, sowie Frequenzen wie in den entsprechenden Hydriden HS_nH und wiederum nur Konfigurationen maximaler Symmetrie. In Wirklichkeit sollten je vier aufeinanderfolgende S-Atome der Kette nicht die Symmetrie C_{2h} , sondern Gauche-Konfigurationen besitzen, wobei die Zahl stabiler Isomerer möglicherweise noch durch Anziehungskräfte zwischen den einsamen Endelektronen in Minimallagen geringen Abstandes erhöht ist.

Bildungswärmen und Trennungsenergien.

Bildungswärmen einiger einfacher Schwefelverbindungen sind in bekannten Sammlungen thermodynamischer Daten enthalten^{9, 10, 38, 39}. Die experimentellen Werte ΔH_{2n} (bei ~ 600° K) der Tabelle 1 gestatten, unter Zuhilfenahme berechneter Wärmekapazitäten (Tabelle 3) die Bildungsenthalpien ΔHf (bei 298,16 und 0° K) für S₈, S₆ und S₄ zu be-

S_{2n}	⊿ Hi	⊿ Hf ₂₉₈ °		∃f₀°	Es		
	II	IV	II	IV	II	IV	
s.	24,5	24,1	25,4	25,0	0	0	
\mathbf{S}_{6}	23,5	25,3	24,2		5,2	8,2	
S_5	(25,3)				(10)		
$\mathbf{S}_{\mathbf{A}}$	29,3		29,8		17,1	_	
\mathbf{S}_{3}	(31,7)				(22,5)		
S,	28,7	29,86	28,7	(29,83)	22,6	24,2	

Tabelle 4. Bildungsenthalpien \angle Hf und Spannungsenergien E_s , kcal/Mol.

rechnen; vgl. Tabelle 4. Die aus *Braunes* Daten ermittelten Werte (Spalte II) weichen nur wenig von bisherigen Literaturangaben (Spalte IV) ab.

³⁶ C. C. Woodrow, M. Carmack und J. G. Miller, J. Chem. Physics **19**, 951 (1951).

³⁷ H. J. M. Bowen, Trans. Faraday Soc. 50, 452 (1954).

³⁸ J. D'Ans und E. Lax, "Taschenbuch für Chemiker und Physiker". Springer-Verlag. 1943.

³⁹ W. H. Evans und D. D. Wagman, J. Res. Nat. Bur. Stand. 49, 141 (1952).

Entsprechend seiner besonderen Stabilität darf man für den achtgliedrigen Schwefelring S₈ völlige Spannungsfreiheit voraussetzen. Die thermochemische Spannungsenergie E_s (einschließlich erhöhter Abstoßungsenergie usw.) für S₆, S₄ und S₂ kann dann einfach berechnet werden nach

$$E_s(\mathbf{S}_n) = \varDelta \mathrm{Hf}(\mathbf{S}_n) - (n/8) \, \varDelta \mathrm{Hf}(\mathbf{S}_8); \tag{8}$$

Spannungsenergien für S₃ und S₅ wurden durch Auftragen von E_s/n gegen den halben Spannungswinkel θ interpoliert, eine Methode, die bei Cykloalkanen recht brauchbare Resultate liefert; danach wurde Δ Hf für diese beiden Moleküle nach Gl. (8) berechnet (Tabelle 5).

Tabelle 5. Bildungsenthalpien (kcal/Mol) gasförmiger Moleküle.

Molekül	n = 1	2	3	4	5	6	8
$\mathbf{S}_n \mathbf{HS}_n \mathbf{H}$	65,8 4,82	$28,7 \\ 3,1$	31,7 10,5	29,3 13,6	25,3 16,7	23,5 19,8	24,5
$\cdot \mathbf{S}_n \cdot$	_	69	72	75	78	81	87

Die Bildungsenthalpien vielgliedriger spannungsfreier Schwefelketten können wie bei den höheren Paraffinkohlenwasserstoffen $(vgl.^{40})$ als lineare Funktionen der Kettengliederzahl n angenommen werden, also

$$\Delta \mathrm{Hf}(\mathrm{S}_{n}\mathrm{H}_{r}) = \alpha_{r} + \beta \, n, \tag{9}$$

wobei r = 0, 1 bzw. 2 für Biradikale $\cdot S \cdot_n$, Radikale $HS \cdot_n$ und Hydride H_2S_n . Ähnliches gilt näherungsweise für die Verdampfungswärmen L. Die Konstante β ist einfach wie folgt zu bestimmen. Zur Spaltung der SS-Ketten in H_rS_n und S_8 ist jeweils die Dissoziationsenergie D_{SS} aufzubringen. Fügt man darauf das so erhaltene $\cdot S \cdot_8$ zwischen die beiden aus H_rS_n ein, so gewinnt man wieder 2 D_{SS} . Nach Gl. (9) wird also:

$$\beta = \frac{1}{8} \Delta \mathrm{Hf}(\mathrm{S}_8) = 3.1 \text{ kcal/Mol.}$$
(10)

Anderseits erhält man durch entsprechenden Einbau von S-Atomen:

$$\Delta \mathrm{Hf}(\mathrm{S}) - D_{SS} = \beta. \tag{11}$$

Während sich α_2 aus bekannten Bildungswärmen der Hydride zu etwa 1,2 kcal/Mol ergibt, ist zur Ermittlung von α_1 und α_0 eine Kenntnis von SS- und HS-Dissoziationsenergien erforderlich.

Aus den beiden für die Dissoziationsenergie des S₂ angegebenen Werten¹⁸, nämlich 101 und 83 kcal/Mol, und der Bildungswärme des S₂ nach *Braune* und Mitarbeiter⁷ errechnet man Δ Hf(S) = 65,8 bzw. 52,5 kcal/Mol (vgl. 66,8 bzw. 53,5 kcal/Mol nach *Evans* und *Wagman*³⁹).

⁴⁰ E. J. Prosen und F. D. Rossini, J. Res. Nat. Bur. Stand. 34, 263 (1945).

bei 298,16° K. Die höheren Werte gelten neuerdings als wahrscheinlicher⁴¹. Gl. (11) liefert dann $D_{SS} \simeq 62.7$ (bzw. 49.3) kcal/Mol für lange S-Ketten, während Gee⁴ für flüssigen Schwefel eher etwas niedrigere SS-Dissoziationsenergien bevorzugt. Für die Bildungswärme des HS-Radikals errechnet sich eine untere Grenze von rund - 45 kcal/Mol aus der Aktivierungsenergie⁴² $E \sim 5$ kcal/Mol der Reaktion H + H₂S \rightarrow H₂ + HS. Elektronenstoßversuche von Franklin und Lumpkin⁴³ liefern Δ Hf(SH) = 38,4 kcal/Mol; die von Stevenson⁴⁴ ergeben den augenblicklich zuverlässigsten Wert Δ Hf(HS) = 35,4 \pm 0,9 kcal/Mol, also D(H...SH) = 92,2 und weiterhin, mittels Δ Hf(S) = 65,8, D(H...S) = 82,8 kcal/Mol, in guter Übereinstimmung mit spektroskopischen Daten von Porter³² und besonders Ramsay⁴⁵. Ferner erhält man mit der in Tabelle 5 angegebenen Bildungsenthalpie des H_2S_2 dessen Dissoziationsenergie zu $D(HS...SH) \simeq$ \simeq 67,7 kcal/Mol. Dieser Wert ist hoch im Vergleich zu der Dissoziationsenergie des Cl₂ und der langer O-Ketten¹⁵ und erklärt recht gut die beträchtliche Stabilität langer Schwefelketten. Normale SS-Dissoziationsenergien sollten allgemein zwischen diesem Wert und dem vorgenannten $D_{\rm SS} = 62.7 \text{ kcal/Mol}$ liegen, also $D ({\rm HS} \dots {\rm S}_2 {\rm H}) \sim 64$ und entsprechend $D(\mathrm{H}\ldots\mathrm{S_2H})\sim 88,\ D(\mathrm{H}\mathrm{S_2}\ldots\mathrm{S_2H}),\ \sim 63,\ D(\mathrm{H}\ldots\mathrm{S_4H})\sim 83\ \mathrm{kcal/Mol}$ und so weiter. Somit erhält man $\alpha_1 \simeq 31$ und $\alpha_0 \simeq D_{SS} \simeq 63$ kcal/Mol zur Berechnung unbekannter Daten in Tabelle 5.

Zusammensetzung des Schwefeldampfes.

Aus den berechneten Daten für S_3 , S_4 , S_6 und S_8 wurden weitere, nämlich für S_5 , S_7 und S_{10} , durch graphische Interpolation erhalten und daraus die entsprechenden Gleichgewichtskonstanten K_n berechnet. Auf eine Wiedergabe der Resultate wird hier verzichtet, da die Werte wegen der besprochenen Vereinfachungen noch nicht als genügend zuverlässig gelten können. Sie sollten jedoch zur größenordnungsmäßigen Abschätzung der Konzentration dieser bisher vernachlässigten Molekülarten ausreichen, da die Unsicherheiten der hier ermittelten Werte sicher nicht größer und wahrscheinlich geringer als die bekannter experimenteller Daten sind.

In erster Näherung ergibt sich so, daß im Bereich geringer Schwefeldrucke, das heißt zwischen 150 und 400° C, S₆-Moleküle (60 bis 70%) vorhertschen sowie hauptsächlich S₈, S₇ und S₅ (zusammen 30 bis 40%) vorliegen. Die Konzentration von S₆ nach der vorliegenden Abschätzung

⁴¹ H. L. Friedman, J. Chem. Physics 20, 1046 (1952).

 ⁴² B. de B. Darwent und R. Roberts, Faraday Soc., Discuss. 14, 55 (1953).
⁴³ J. L. Franklin und H. E. Lumpkin, J. Amer. Chem. Soc. 74, 1023 (1952).

⁴⁴ D. P. Stevenson, Trans. Faraday Soc. 49, 867 (1953).

⁴⁵ D. A. Ramsay, J. Chem. Physics 20, 1930 (1952).

484 N. W. Luft: Über die Dissoziationsenergien von S-S-Bindungen.

ist größer, die von S₈ kleiner als nach *Braune* und Mitarbeiter⁷, beide Ermittlungen unterscheiden sich erheblich von früheren Angaben^{1–3}. Der Anteil höherer Polymerer am Schwefeldampf sowie von Biradikalen ist unbedeutend im gesamten Temperaturbereich; diese Verbindungen können aber in Lösung und im adsorbierten Zustand eine Rolle spielen. Zwischen 500 und 700°C fällt die Konzentration von S₅ bis S₈ rasch ab, während die von S₈ und besonders S₄ erhebliche Werte erreicht. Bei noch höherer Temperatur verlieren auch diese Moleküle neben S₂ rasch an Bedeutung.

Auf Grund der vorstehenden Ergebnisse muß man auch die von Braune und Mitarbeiter⁷ durchgeführte Auswertung ihrer experimentellen Ergebnisse, trotz der im Vergleich zu ihren Vorgängern erzielten Verbesserungen noch als einigermaßen überschlägig betrachten. Infolge der zutage getretenen Komplikationen erscheint aber eine eingehendere Erörterung erst berechtigt, wenn weitere experimentelle Daten zur Verfügung stehen.